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2-D Dynamic Cavity Expansion Model
for Arbitrary Tractions

Hyung Je Woo

Abstract

A two dimensional dynamic cavity expansion model is developed for the cylindrical
cavity in an infinite medium subjected to an asymmetric constant velocity vector as a
surface traction on the cavity wall. From the theory of elasticity, the equation of motion for
an elemental volume of elastic material in plane strain and in polar coordinates is used. The
analysis dealing with the exterior of the cavity consists of Hankel functions of the first
kind. Two different methods, the Least square procedures and the Fourier transforms, are
employed for the elastic problems. As a first technique, Least square procedures has been
used to solve the unknown constants of the elastic solutions with the initial conditions on
the cavity surface. The frequency equations can be solved, for example, for the first ten
roots for each of the first eleven modes of vibration. Secondly, Fourier transforms are
used to express all the solutions in the frequency domain and then the complete solutions
can be obtained by inversing these Fourier transforms. Algorithms of inverse fast Fourier
transforms (FFT) will be an efficient technique for this case. For each discrete time step,
the equilibrium equations, along with the von-Mises yield condition, are solved for the
solutions in the plastic region. The model can be also applied when arbitrary normal and
tangential tractions acting on the surface of the circular cavity are prescribed.

1.0  Elastic Region
1.1  Wave Equations

The equations of motion of an isotropic elastic solid in which body forces are
absent, are:

82
-3—2—(2, +,u)—+uV2 (1a)
82
?_(l +,u)—é;+,uV2 (1b)
0? oA
P = A+ W=+ iV, (1o)
2 2
where the operator V? is written for ( 8 gyz % 2)

Using the vector operators with the displacement u, we have another form of the vector
displacement equation of motion as shown below:




A+2u)V(Veu)—uVxVxu=pi (2)
where the dilatation is A= V-u.

These equations of motion may be shown to correspond to the propagation of two types of
waves through the medium

2
A
p‘gat2 =(A+21)V’A (3a)
a’w )
p > =uvV-w, (3b)

where A is the dilatation propagating through the medium with the velocity [(A+2u)/ p]%2
and w is the rotation about the axis propagating with the velocity (i / p)%_ In vector
forms,
VIA=Alct (4a)
Viw=w/c>. | (4b)

Hence the displacement equation of motion governs waves of the dilatation and the
rotation.

Poisson gave a class of particular solutions to Eqn. (2), based on the assumption
that the displacement vector u is the gradient of a potential function, i.e., u = Vé. Later,
Lame gave the general solution using both a scalar and vector potential, such as every
displacement vector field of the form

u=Vo+Vxy, 3

which satisfies Eqn. (2), provided ¢ and Y are solutions of:
Vio=¢/c (6a)
Vig=iscl. (6b)

When solutions are found to Eqn. (6) for ¢ and ¥, displacement vector u can be obtained
from Eqgn. (5), and this is a solution to the displacement equations of motion.

We particularly consider the 2-dimensional plane strain problem and use the
cylindrical coordinates (7, 6,z). In the absence of the body force, two scalar wave equations
are:

Vip=¢/c,’ (7a)
Viy=1y/c’. (7b)

In cylindrical coordinates,




»? 19 17
=—+

=2 1o, 19
or* ror r*de*

For harmonic waves of frequency ®, we write
o(r,0,t) = O(r,0)e™ (8a)
w(r,0,0) = ¥(r,0)e™. (8b)
Since the potentials must be periodic in 8 with period 27, we seek solutions of the form:
@(r,0) = R(r)e" (9a)
¥(r,0) = S(r)e"™ (9b)
where n = integer.

Substituting Eqn. (8) into Eqn. (7), we obtain two Bessel equations:

Y4 1 4 2 nz
R'+=R +(@’-=)R=0 (10a)

r ’ r

” 1 ’ 2 n2
S”+=8"+(B*-=)S=0 (10b)

r r

® )
where 0. = — and = —.
¢, c

5

The general solutions of these equations are the linear combinations of Bessel functions J,
andY,, e.g.,

R(r)=AJ (or)+ BY (ar) (11)

where the Bessel functions of the first and second kind and order n are given by (when
p=n= 0 or integer):

1= Y EX DT (122)

o ml(m+ p)!

_ D2
J_p(x)—';) p— (12b)
Jp (x)cos(pr) — J_p(x)

sin( pr) (12¢)

Y, (x)=

For brevity we employ the notation:




C’()=J,(2)

C?(2)=Y,(2)
(13)
CP(2)=H"(2)=J,(2)+iY,(2)

Cl(2)=H(2)=J,(2)-iY,(2)

where H®(z) and H®(z) are the Hankel functions of the first and second kind,
respectively. The functions J, and Y, are suitable for the solutions of the interior boundary
value problems, while H and H® are suitable for the exterior boundary value problems.

When a cylindrical cavity is subjected to dynamic surface tractions along the axis of
the cylinder, the state of strain is planar. The general solution of an arbitrary cross sectional

cavity problem in an infinite medium will have the Hankel function H,” for the cylinder
function that is to be retained in the expressions of the Lame potentials.

Figure 1. Cylindrical cavity with surface tractions.

The use of H" ensures that the Sommerfeld radiation condition is satisfied at infinity, so
that H"(r)exp(—iot) represents waves advancing toward infinity from the surface of the
cavity. Note that for waves converging to the cavity, one must employ H®(r)exp(—imt).
Thus for the problem of a cavity subjected to surface loads we use C” = H,”.




o(r,0)= 3 4 H®(ar)e” (142)

n=0

¥(r,0)=Y BH"(Br)e” (14b)

n=0

Generally, we have

Vo=—e +——e, +—e,, 15
LR T 4>
1oy, oJy oy, oy 10 1 oy
Vxy =(—%-—"Le +(—L—-—Le, +{—— —-——"le_, 16
v=C" az)e' (az &)e {rar("’"’) rae}e, (16)
and since 4. =0 and — =0,
4 az
9 1dy
N ATLRA &3 17
“r or +r 20 (172)
1dp Jy
=Ttz 17b
“o roé or (17b)
The displacement field, aside from a factor exp(-iax), becomes (see Appendix A):
N L
u = %ZZ[A"ka3)(ankr) +iB US (B, r)le™ (18a)
n=0 k=1
_ _1_ & . 3) (3) ing
U, = rZZ[lA"kVI (a,r)+B, VO (B,r)le (18b)
n=0 k=1
where
UP(ar)=arC? (ar)—nC®(ar)
UP(Br)=FnC®(Br)
19

VP(ar)=FnC®(ar)

VO (Br) = ~BrC,(Br) +nCP(Br).

In deriving Eqn. (19) we have employed the recurrence relations for the cylinder functions
C,(2), where z is complex and n is any number (not necessarily an integer):




zC(2)=nC,(2) - zC,,,(2) = —nC,(2) + 2C (7). (20).

The physical components of the stress tensor follow from Hooke’s law, namely,

a2¢ iaw 1921,/)

=AVip+2
o o+ ( r? 90 r8r80

2 2
1V2¢+2u 8¢+18¢ 1y 81//)

or roe* rab ordd

o,=AV¢
(21)
(g o 2 9¢>+_1_c921//_82 191;/)
rord8 o8 o8t ot ror
c,=0
O-Bz = 0
where 1 = E and A = vE __2V
a 2(1+ V) 1+ v)(1-2V) —avi
Thus, aside from the exponential factor exp(-iax), we have (Appendix B):
2'u Zz[AnkTI(?)(ankr) +iB, le(;)(ﬁnkr)]eme
n=0 k=1
“ N L
_2_22 (3)(ankr) +iB kTS)(ﬁnkr)]eme
n=0 k=1
N L
0, =33 4,19 (@ e
I p=0k=1
(22)
2U o~ (3) 3) ind
Oy = Tzz[lAnkTu (o) + B, T, (Byrle
n=0 k=1
c =0
=0

where

TO(ar) = (n* +n- %,Bzﬁ )CY(ar) — arC? (ar)




T3 (Br) = F[-(n* + n)C” (Br) + nfrC, (Br)]
TP (ar)=—(n*+n- % B*r* - a’r*)C (ar) + arCP, (ar)

T3, (Br) =F(n* +m)CP(Br) = nPrC2, (Br)]

T3 (ar) = £[-(n* + n)C(ar) + narC® (ar)]
T (Br)y=—(n*+n- %,Bzrz)C,f"’(ﬁr) + BrC?, (Br)
(l)(ar) (a %ﬂZrZ)C:i)(ar).

1.2 Frequency Equations

Boundary conditions for free vibrations are:
0,=0,=0 on r=a.

We have

Q |.=
gMz

L
2 [A. T (a,a) +iB, TS (Ba)le™
k=1

L

2 N in
= —l;-zz[lAnkTii)(anka) + BnkTig)(ﬁnka)]e 9-

a n=0k

(23)

(24)

(25a)

(25b)

Setting o, and ©,, equal to zero at r = a, we obtain a set of two homogeneous equations.
The determinant of this set must vanish for the existence of a non-trivial solution for A,,

and B,,. Thus we have the frequency equation:

_|T (e T (Bua)| _
iTy(@ua) Ty (Bua)

T ()T (Ba)+ T ()T (B,a) =0
where

T (0a) = (n* +n - ﬁzaz)H(”(aa) aaH®, (aa)

T\y (Ba) = —(n* + n)H."(Ba) + nBaH ", (Ba)

T (ata) = —(n* + n)HY (aa) + noaH®, (o)

(26)

27)

(28)



TO(Ba) = ~(n? +n-%ﬁ2a2)ﬂ;l>(ﬁa)+ BaH®, (Ba).

1.2.1. Axially Symmetric Case: n=0
We have:

1
T (o) = —EﬁzazHé”(aa) + oaH" (0a)

T, (Ba)=0
(29)
Tfj )(ata) =0
1
TS (Ba) = 5ﬁ2a2Hél)(ﬁa) — BaH" (Ba).
Then the frequency equation becomes
T (0, a)Te (Bua)=0. (30)
For the given Poisson’s ratio, v, frequency ratio k is fixed, i.e.:
\ _ ,
o g 1=2v 31)

TH T a+2n 2(-v)

1-2v
a—“fZ(l—v)ﬂ' (32)

and so,

If v=l,then k=l.
4 3

ie. B=30

Then the frequency equation becomes:

[H (0tg,0) - —— H{" (o, @)1 H; (V30r0,) - H"(Baga)]=0.  (33)

2 2
3a,.a \3o,.a

Eqn. (33) can be solved for the roots ¢, which, in turn, yield @,,, if a, v and ¢, are
known.




1.2.2. Nonaxially Symmetric Case:_n # 0

The frequency equation becomes, if v = %,

T (@, TP (V3a,a)+ T (0,a)TS (V3a,a) =0 (34)
where, n=1,2,...,N and k=0,1,2,....K.

We have K number of frequency, «,,, for each n.

1.3  Least Square Method

Unknown constants A, and B, can be determined from the initial conditions at
t = 0. For the constant velocity initial conditions,

1,(a,0,0)=V =V,

_ (35)
#,(a,0,0)=V,=0.
y
VO
- > X
Figure 2. Velocity initial condition.
From Eqns. (18), radial and circumferential velocities are the real part of:
J e~ 3) (3) ing —iax
5‘# = ‘;zz[_lAnkwnkUl (a0, r)— B0, Uy (B,r)le™e (36a)
n=0 k=1
8 1 Y < (3) . 3) ing —iwt
5”9 = —Zz[Ankwnle (00,r) =B, @, Vy" (B,r)]e™e (36b)
n=0 k=1



Then

N L
Re Vr = 12 Z[AnkwnkUIG)(ankr) Sin n9 - BlzkwnkU§3)(ﬂnkr) Cosne] (373)
T n=0k=1

N L .
ReV, = —i—ZZ[Anka)nka”(ankr) cosnd+ B, VOB, r)sinnbl.  (37b)

n=0 k=1
The problem is to minimize the functional:

F(A,,B,)= i[Re V,(r;,0,A,B,)-V.I’ +i[Re Vy(r;,0,A,B.) =V, T (38)

J
Jj=1 j=1

The first terms in each bracket are the actual velocities from the elastic solutions and the
second terms are the specified velocities from initial conditions.

We have:
_O?E= , oF =O,...,£—=0
d4, A, dA;
(39)
JoF JF JF
—=0,——=0,...,— =0
aBil 8Bi2 aBlL

where 1=0,1,2,....N.

The final matrix form of Eqn. (38) is obtained as follows by Least-Squares procedures.
Matrix formulations are shown in Appendix C:

[P P+Q’Q P'C+Q D][A}=[PT QT][S} “0)

C'P+D'Q C'C+D'™D|B]| [CT DT
where

_AOI T _BOI |
AOZ BOZ
AOI BOI

Dl=A =B

Anl and nl (41)
AnZ Bn2

_Anl a LBnl n

10




‘7’1 Vol
Vrz ‘792
V,|=Sand |V, [=T 42)
Vr"l Ve"‘
_ Po 0 P P Pt Pt P ]
Pror t Pror Pann 0 P 0t Pam vt P
P= (43a)
_pm,Ol T pm.Ol pm.ll e pm,ll o pm‘nl o pm.nl_
—‘11,01 Gy Y v G 0 Dy T Gim ]
Do " Gt D Gyt om0 Yo
Q= . (43b)
_qm,Ol e qm,Ol qm,ll o qm,ll T qm,nl e qm,nl_j

Matrix C and D have the same pattern as P and Q.

The components of the matrix P, Q, C and D are:

Pia = %wika3’(aikrj)sini9j (44a)
G =;17wika3)(aikrj)cosi9j (44b)
i = ——:ja)ikUE” (Byr;)cosi6, (44c)
4 == @,V (Byr,sini6) (44d)

J

1.4 Fourier Transform Method

Another available method to solve the problems other than using the Least square
procedure is the Fourier transform technique. Since Hankel functions are complex valued
there is no point in insisting upon the real form of Fourier series. Thus we write for the
Fourier transform of the displacement and stress fields:

11



7= 34, @U @)+ B @)U (Brle”

| g—

176 _ _]._ i[iA"(w)VI(B)(ar) _ an(w)Vz(B) (ﬁr)]eine

gt

and

5, =2 34, @10 @)+ B@)TI(Brk"

n=—co

G, = 3‘5‘- i[An(w)T;?(ar) + B(@)TS (Br)le™
r

n=—ca

G = -2;’i > A, ()T (o) - iB, (0)TS (Brle”

n=—co

(45)

(46)

where U®(ar), ... ,To(Br) are the same functions defined by Eqns. (19) and (23) with a

2

positive sign only, in which C” = H" is used for C;’. The conditions A, (®) and B (®)

are to be determined from the boundary conditions.

1.4.1. Boundary Conditions

Surface velocities are assumed to be given on the surface of the cavity r = a; i.e.,

ur(aa 9,[) = Vr(a’t)

i, (a,0,0) = V,(6,1).

Expanding the Fourier transforms of these into Fourier series we have:

7.(6,0)= 3 T (0)e"

n=-=o0

7,60 = 8 (@)

n=—co

where T,(@) and S,(®) are determined through:

T (w) __1__-2’r Vr(G,CO) -in6
{Sn(w)}_zng{%(e,w)}e 0

where n =0,£1,12,...

Since velocity becomes:

12

(47a)

(47b)

(48a)

(48b)

(49)




V(0,0)= 1 i[—-iwAﬂ (UL (aa)—ioB,(w)UY (Ba)le™
a

n=-—oc0

(50)
V.(6,0)= %i[wAn(w)Vf”(aa) — 0B (0)V® (Ba)le™,
the boundary conditions from Equation (47) now give:
U®(aa) UP(Bay][A (@) _ a [iT, (@)
[Vf”(aa) Vf’(ﬁa)]{Bn(w)} o [S,,(w)]' Gl
The solution of this set is
A,(0) = (DT (VP (Ba) = S, (@)U} (Ba))det (522)
B(@)= (%)[Sn (@)UP (o) - iT, (@) V® (0a)]/det (52b)
where
det = ~U® (0a) V" (Ba) ~ VO (ca)US" (Ba). (53)

1.4.2. Displacements and Stresses

Substituting the above A (@) and B, (@) into Eqns. (45) and (46) we obtain the
solutions as follows. Displacement fields are:

u(r,0,w)= 1 i[iTn(w)ui"(wr) + S, (0)u? (wr)le™ (54a)
I
u,(r,0,w)= —i— i[Tn(a))vﬁ" (wr) +iS, (@) v (wr)le™ (54b)

where

u,(,')(a)r) = (%)[—Vf’ (,Ba)UlG)( or)—- Vl‘”(aa)Uz‘” (BN)] / det
u®(wr)= (%)[—-UZ‘” (Ba)UP (ar) + UP (ca)U (Pr)] /det
(55)

vO(0r) = (%)[v;” Ba)V (ar) - VO (aa)VO (Br)] /det

V¥ (wr) = (%)[-—Uf’ Ba)VP (ar) - UP (aa)VP (Br)] /det.

13




Stress fields are:

C.(r.0,w)= 2—“; i[iTn ()t (wr)+ S, ()t (wr)le™
r

n=-—co

5,(r,6,0) = 2 3 T ()5 (@r) + S, (@5 (@r)}e**
r

n=-co

,(r,0,0)= %‘zi 3 [7, ()20 (@) + S, (@) 72 (r)]e"

n=—oco

where

1@ = (DAY (BaTS (ar) - V2 (0a) T3 (B} fde
19(0r) = (U Ba)T (ar) + U @) TS (B et
50(0r) = OV (BT (@)= VY (0a) TP et
5P (awr) = (%)[—U;” (Ba)T; (ar) + U (aa)T;,) (Br)] /det

0 (or) = (%)[Vf’ Ba)TY (ar) -V (0a)TS (Br)] / det

79 (or) = (%)[—Uz‘”(ﬁa)Tﬁ)(ar) - UP(aa)TY) (Br)] /det,

Velocity Boundary Conditions

When we have the boundary conditions as

i) V(ab0nH=V(0,)=V, for -6,<0<6,
=0 forelsewhere

and
(i) Vy(a,0,H)=0,

then

L)
Tn(a)) = .2% J“/Oe—inode

_90

14

(56a)

(56b)

(56¢)

(57

(58a)

(58b)



= ﬁsin(neo) (592)
nm

S (0)=0. (59b)

We obtain the displacement and stress fields by substituting 7 (@) and S (w) into Eqns.
(54) and (56) as follows:

_ _ V,sinnb, a. V> (Ba)U? (ar)+ VI (aa)U (Br) e
#(r.0,0)= r '; niw (a)) U® (aa)VP (Ba)+ VP (0a)U® (Ba)
(60)
_ _ 1 V,sinnb, a. =V (Ba)VP (ar)+ VP (0a)VY (Br ) _ind
B (r,0,0) = r ,,=2_“ nw ( U“’(aa)V"’(ﬂa) + VG)(Ota)Um (ﬂa)
and
24 & . Vysinn, a. V2 (Ba)T (ar)+ VI (aa)T (Br) e
O' (r, 0, W)= ,,_z_i - (a)) U(3’(0£a)V‘3)(/3a)+ V‘”(aa)U"’(ﬂa)e
_ _2u . Vysinnb, a V‘3’(ﬁa)T‘3’(ar) + VO (aa)TS) (Br) o
Ge(r, 9, (0) = r2 ’Z‘i nﬂ: ((D U(3)(aa)v(3)(ﬁa) + V(3)(aa)U(3)(ﬂa)
(61)
_2u & Vysinnb, a =V (Ba)Ty (ar)+ V2 (aa)Ty (Br) o0
0,(r.0,m)= Z’, e (w) U‘3’(aa)V‘3’(ﬁa)+ V"’(aa)U‘”(ﬁa)
where U®(ar),...., TS (Br) are the same functions defined by Eqns. (19) and (23) with

positive signs only, in which C® = H" is used for C”. Now the inverse of Fourier
transforms of these equations gives the complete solutions.

2.0  Elastic-Plastic Boundary

The main problem is to determine the contour C that separates the plastic from the
elastic region such that the displacements, as well as stresses, are continuous throughout
the exterior of the cavity surface. If this elastic-plastic boundary C has been found, the
problem divides into a pure plastic problem and a pure elastic one so that the elastic and
plastic solutions can be obtained for each time step.

We have three cases as we evaluate the Von-Mises yield condition along the each sector:

(Case 1) —;—(0’, -0, +60,° <2Y* : elastic

(Case 2) 2(0’ -0, +60,,> =2Y* : elastic-plastic boundary
2 r ] re

(Case 3) %( c,~-0,)° +60,°>2Y> : plastic.
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As we keep checking the yield condition exterior of the cavity surface, the elastic-plastic
boundary has been found if the solutions at the node point become elastic. Then the
stresses inside the boundary C are plastic and can be obtained by using the equilibrium
equations and yield condition.

elastic
region

plastic
region

Figure 3. Elastic and plastic regions.

3.0  Plastic Region

3.1 Stresses

We have the equilibrium equations, in which the body forces are neglected, for the
plane strain case in the cylindrical coordinates as follows:

do, 190, ,9.20, _ (62a)

or r 00 r

do, 1do, 2
e 0 25 =0, 62b
or radod r ? (62b)

At the elastic-plastic boundary, plastic solutions are the same as elastic solutions because of
the continuity condition. Plastic solutions at the j =s node on contour I'; now can be

found with the stresses at the previous contour I',,; from the elastic-plastic boundary up to
the cavity wall.

(Gr )j_wl - (O.r )Is 1 (O-,e)jx+l+l - (O-re)j:-H (O-r )j:+l - (O-e )]-:+l
+ +
Ar r AB r

js+l js+l

=0 (63a)

(O-r ss+l - (O-, )-x (G ) s+l - (G ) ;5+1
9)J oy L 1 9/ jstiyy oy 2 (6.) 0 =0 (63b)
Ar Fon AB 7 on J
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Then we have three components of stresses as follows:

Ar Ar
(O-r)j: = (O-r)jsH + 7[(o—r9)js+1+l - (o-re)jsﬂ ] +

js+l

[(6),.=(0,),.]  (642)

25+l
IR

A 24r
(0.0, =(0,),0 ¥ ==1(0,) 1, = (0,) 1+ =(0,,) (64b)
js+l

;541
Js

(0,), =(0,), +1/: O (64c)

3.2 Displacements

In the plastic region, the displacements can be determined from the fact that €, + ¢,
is still given by Hooke’s law, since the sum of the plastic part of &, and €, vanishes.
Assuming small strains, the displacements equations become:

au u ldv 1-2v
+ —

[ e

(0, +0y) (65a)

and

W v, lou_o, (65b)

or r rdd G

Then we have:

u-x+l - uq v 541 - v-:+l u-s+l 1 2 V
—t {(6),+. (04) .} (66a)
Ar r H,AB o /
v/-s+l - ij u}NlH - ujnl _ vjs+l — (O.rg )js+l ) (66b)
Ar r s+1A6 rj:+l ﬂ

Now we have two components of displacements as follows:

_1- — —_1_- vjs+l+l - vjn—l + uj:*l l

-5 u<s+l
Ar 7 Ar r_ A@

:+l 5+l
J

—H(0),u -0, (6Ta)

U, — U, U . (G ) s+l
L v-: = —1_ v~(+l + L . - . “ . (67b)
Ar & Ar 7 r.,A0 7 o u

:+l
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Appendix A

Displacement in terms of A, and B ,

Aside from exp(—iwt), since

O(r,0)= Y AH"(ar)e"

n=0
¥(r,0)=Y B.H (Br)e",
we have:

(1) in@
ar ZOA, —H"(ar)e

= Z Ay ;[—nH,‘,”(ar) +arH,” (ar)le™
=0
= iA,nH" (ar)e"
n=0

8!// 2 nka H(')(ﬁr)e'"e

Z k—[ —nH"(Br)+ BrH®, (Br)le"
B, ,nH" (Br)e™.
99 nz:;l nk B

Then we have:

w =29 10V
" or rc?@

= —-Z{An [-nH" (ar)+ arH® (ar)]+ iB, ,nHY (Br)}e™®

= —2 [4,.U (ar)+iB, U (Br)le™

n 0
_19¢ dy
®r00 or
=%2{l nH,"(or)+ B, [nH" (Br) - BrH.", (Br)lie"
n=0

= —z [iA, .V (ar) + B, Vs (Br)le™.

=0
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Appendix B

Stresses in terms of A, and B,
Plane strain stress-strain relationship is:
0, =2Ge, +A(g +€)

o, =2Ge, + Alg +€)

o,=A(g, +¢&,)=V(0,+ o,)

ny:GYX.V
GXZ=O
o.=0

where shear modulus G and the quantity A are the Lame constants.

In cylindrical coordinates,
e = du,

" or
g —L10u 1

® roe r

z = O

__l_(l(')u duy _l)

T0=5 90 ar v
£, =0
g, =0

The stresses in terms of displacements u, and u, are:

1 du
c.=Q2G+A ) 9
2G+ ) + (= 89+r)
_(2G+1)(—‘9”9+ ')+/1@r-
or
_,0u  1du, u
Gz_l(8r+r86+r)
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10u, du, u
0, =G(——F+—2%--2
e - rodoé or r)
c.=0
=0.

Using the above equations, we can obtain the stresses in the cylindrical coordinates in

terms of the unknown parameters A, and B,,. Aside from exp(—imt), since:

=ii J=arH" (or) +(n* +n— o*r*)H® (ar)]

2

n=0
+iB,, [nBrH", (Br) — (n* + n)H® (Br)]}e™

%“e.=i2i{ J[narHY, (ar) - (n* + m)HO (0rr)]
r | g

+B,[BrH (Br)~ (n* +n—B*r)H (Br)l}e™
ge = Z{zAnk[narH(” (or)—n*H'"(ar)]- B, ,n* HV (Br)l}e™’

aua ) r12 2, (=Ayn*H,"(ar) + 1B, [=nfrH .5 (Br) + n*H P (Br)e”

2

the final stresses become:

N L
=—”ZZ (Al +n= 2B () - ar (o)
r n=0 k=l
L[

(n* + n)H(‘)(ﬂr) +nBrH" (Br)]}e™®

=

L
c, = 3%22{,4",( [—(n* +n— 1 /32r2 - a’r)H(ar)+ arH (ar)]
P n=0k=1

+iBy[(n* +mH," (Br) - nﬁrH‘”l(ﬂr)l}e'""

—“ii {liA [-(n* + n)H (ar) + narH'® (ar)]
,

L [~(n” +n— ﬁzrz)H“)(ﬁr)+BrH("1(ﬁr)]}e'"o

=—‘u~ii A, (0*r? —l-ﬁzrz)H“)(ar)e""s
z 2 s nk 2 n
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Appendix C

Matrix formulation for Least-Squares procedures

Define:

oF

(I) — =0 case:

oA

ik

(II)

= (0 case:

(1) For 4,

Define:

Then,

[ B B

where,

24

V,(r,60,A4,.B)—V =h
V, (r,6,,A4,B,)—V, =k,
z, d(h’ ), a(k?)
L}=0
;{ aAzL Atk }
) +k,—=—L)=0
Z‘ ’o'?A ’8A)

& O |, 90D
%5, " om, "
oh, dk
2 0h 54k gD =0

dh,
oA, 7128
ok, r.6)
aA D710
hP+[k kK k,JQ=[0 0 0

0]




Prot
P

_pm,Ol

9\,01

93,01

| D01

Also define:

Then we have:

Transposing gives:

We now have:

Pio
Paor

Pum.ot

9101
92,01

9.0

PTHT +QTKT -

PT

Pin
P21

P

9.1
9211

qm,ll

h,

k,

LFNF‘_?J

m _|

h,

ky
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Piu
Pru

pm,ll

9.1
91

qm.ll

h

m

k,]=K.

HP+KQ=[0 0 0

(HP+KQ)" =[0 0 0

]=H

(HP) +(KQ)'=[0 0 0

0]

Pin1
Pam

Pm,nl

dim
92.m

qm,nl

].

T

T

of .

pl,nl
P

pm.nl_

ql,nl
q2,nl

qm,nl _




Since we have:

I rl- _‘7r,q _hl- _Vﬂl Vol kl
r Vrz hz V92 ‘792 k2
r3_‘7r3=h3and Ves—voa=k3’
_Vr,,, N _‘_/:-m B _hm . _Ven . _Vegn i —k'" -
we finally have:
I ’l- -Vel- —‘_7"1- —Vol-
r V92 ‘7rz ‘792
PV, [+Q7|V, |=P"|V, [+Q| V,
_V’ " L. On A ‘—i"m ng
(2) For B,
Define:
ki
9B ¢ (756,
i
ok,
aBJ = div"" (s Gj ).
ik
Then,

[ n h ... BJC+[k k k .. k,D=[0 0O O .. O]

Matrix C and D are same patern as P and Q. Then,

HC+KD=[0 0 0 .. O]
Transposing gives:

(HC+KD)' =[0 0 0 .. 0]
(HC)" +(KD)' =[0 0 0 ... 0O].

We now have:
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C'H' +D'K"=|0

—0_

T k1 0]

h, k| |0

C'| b |+D'|k [=|0

] k.| O

We finally have:

V.1 Vel [V.] [V]
v, Vs, Vrz Voz
C'|V, [+D"|V, |=C"|V,_|+D"|V,
_Vr”‘_ _Vo'"_ _‘7"m_ _Vem

If we define the column vector of unknown constants A, and B, as A and B,
respectively, i.e.,

AOI BO]
A02 BO2
AOI BOI
D |=A : |=B
A, and B, ’
An2 ' Bn2
L_Anl n LBnl N

we have the velocity matrices expressed in terms of A and B as shown below:
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_AOX ] -Bm i
AO?. B02
Vrz Aﬂl B()i
=P i |+C { |=PA+CB
Anl Bnl
_V’r,,I B An2 Bn2
_Aﬂl . L Bm‘ .
and
-A()l ] —BOl 1
A02 B02
- Vel -
V91 A()l BOI
V, |=Q| i |+D| { |=QA+DB
: Anl nl ’
_V9 n AnZ Bn2
_Anl . L Bnl _

=S and

w

RIS

-t
3

Then two final matrix forms are:
(1) For A, :
P"(PA+CB)+Q"(QA+DB)=P'S+Q'T
P'P+Q'QA+(P'C+Q'D)B=P'S+Q'T
(2) For B, :

CT(PA+CB)+D"(QA+DB)=C'S+D'T
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(C'’P+D'QA+(C'C+D'D)B=C’S+D’'T

For both equations, the matrix form becomes:

P’P+Q'Q P'C+Q'D [A]_ P’ Qf [S}
C™P+D"Q C'C+D™D|B| |c” D" | T/
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